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Abstract: In this note we construct families of asymptotically flat, smooth, horizonless

solutions with a large number of non-trivial two-cycles (bubbles) of N = 1 five-dimensional

supergravity with an arbitrary number of vector multiplets, which may or may not have the

charges of a macroscopic black hole and which contain the known bubbling solutions as a

sub-family. We do this by lifting various multi-center BPS states of type IIA compactified

on Calabi-Yau three-folds and taking the decompactification (M-theory) limit. We also

analyse various properties of these solutions, including the conserved charges, the shape,

especially the (absence of) throat and closed timelike curves, and relate them to the various

properties of the four-dimensional BPS states. We finish by briefly commenting on their

degeneracies and their possible relations to the fuzzball proposal of Mathur et al.
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1. Introduction

The four-dimensional multi-center BPS solutions of type II string theory compactified on

a Calabi-Yau three-fold have been derived in [1 – 5], and their lift to M-theory was, after

the indicative work [6, 7], explicitly written down in [8] (see also [9]). Recently, this idea

of the 5d lift of 4d multi-center solutions have contributed to the understanding of black

ring entropy [8, 10, 11], the relationship between the Donaldson-Thomas invariants and

topological strings [12], and the OSV conjecture [13]. Indeed, with different choices of

charges and Calabi-Yau background moduli, one can expect to have a large assortment

of BPS solutions to N = 1 (8 supercharges) five-dimensional supergravity with various

different properties by simply lifting various multi-center solutions to five dimensions.
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On the other hand, Mathur and collaborators have proposed a picture of black holes

different from the conventional one. According to this proposal, the black hole could actu-

ally be a coarse-grained description of a large number of smooth, horizonless supergravity

solutions (“microstates”, “proto-black holes”) which have the same charges as that of a

“real black hole”. (see [14, 15] and references therein). A question one might then ask is,

do there exist some solutions in the zoo of the lifted multi-center solutions which possess

this property? If yes, how many of them are there? And how to classify them?

To construct a solution like this via the 4d-5d connection, first of all in order to

have the right global feature at spatial infinity (that it should approach Rt × R
4 but not

Rt ×R
3 × S1), one would need to take the decompactification limit in which the M-theory

circle is infinitely large at spatial infinity. In this limit the five-dimensional description

is also the only valid one. Furthermore, for the smooth and horizonless feature we have

to restrict ourselves to D6 or/and anti-D6 branes as the centers in 4D. To obtain non-

trivial charges we then turn on the world-volume fluxes on these centers. Finally we lift

the solutions with these charges and background to five dimensions. In this way we have

indeed obtained a large number of asymptotically flat, smooth and horizonless solutions,

to five-dimensional supergravity theories with an arbitrary number of vector multiplets,

which may have the total charge of that of a black hole. Actually, if we restrict to the

STU Calabi-Yau and make a special Ansatz of the Kähler moduli, we retrieve the known

bubbling solutions of [16 – 18].1 In a recent paper, through a more explicit study of the

above-mentioned solutions, Bena, Wang and Warner [21] have constructed the first smooth

horizonless solutions with charges corresponding to a BPS three-charge black hole with a

classical horizon. Indeed, to understand this recent development has been the original

motivation of the present work.

To be able to have a solution like this in the case of a general Calabi-Yau compactifica-

tion further heightens the contrast between the picture of a black hole of Mathur et al and

the conventional one . Unlike the torus case, a general Calabi-Yau with its complicated

topological data is generically the biggest origin of a large black hole entropy [22, 23]. As

we have mentioned, to have a horizonless solution lifted from four dimensions forces us

to consider only rigid centers, i.e., those without any (classical) internal degrees of free-

dom associated to them. To reconcile these two pictures therefore seems to be much more

challenging in the case of a general Calabi-Yau compactification. The authors of [19] have

proposed a following picture: while the system is described by a D-brane bound state at

weak string coupling, it expands into a multi-particle system when we turn on the gs and

is thus described by a multi-centered supergravity solution, and further grows into a five-

dimensional system when the string coupling is increased even further. While this picture

has been carefully studied and tested in the case with the total charge not corresponding to

that of a classical black hole [24], we don’t seem to have much evidence to argue the same

for the case with black hole total charges. In other words, a priori we don’t see the reason

why the D-brane bound state must open up into a multi-center configuration instead of

1In [19] it has been observed that, if one adds a constant term to one of the harmonic functions in the

Bena-Warner et al bubbling solutions, which corresponds to de-decompactify the extra dimension, and then

reduce it, one would get a 4D multi-center solution. See also [20] for a related discussion.
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staying together and form a black hole in the conventional sense, as gs is slowly turned on.

To sum up, how one would be able to reconcile the two pictures of black holes remains

mysterious.

The paper is organised as follows: in section two we lay out our notations and review the

4d multi-center BPS solutions and their lift to five dimensions. In section three we construct

our bubbling solutions in 3 steps. First we work out the 4d solution in the M-theory ⇔
large IIA Calabi-Yau volume limit, and lift it to five dimensions. Secondly we rescale the

five-dimensional coordinates to make it commensurable with the five-dimensional Planck

units. Finally we put in the charge vectors of D6 and anti D6 with fluxes and arrive at the

final form of the bubbling solutions.

In section four we analyse in full details the various properties of these solutions. A

large part of the analysis holds also for generic lifted multi-center solutions in the de-

compactification limit, and some furthermore also holds for generic values of background

moduli. Therefore, along the way we have also derived various properties of all the lifted

multi-center solutions; or to say, the properties of various configurations of charged objects

in type IIA string theory in the very strong coupling limit. Specifically, in 4.1 we work out

the asymptotic metric, read off the five-dimensional conserved charges, including the elec-

tric charges of the M-theory C-field, and the two angular momenta JL and JR, for generic

centers. In 4.2 we focus on the metric part and first study the condition for the absence

of closed timelike curves (CTC’s). Here we find a map of diseases: a CTC pathology in

5D corresponds to an imaginary metric pathology in 4D. We also analyse the possibility of

having a throat-like (i.e. AdS-looking) metric in some part of the space. We conclude, also

independent of the details of how the charges get distributed, that a multi-center configura-

tion with charges not giving any black hole can never have a region like that, at least in the

regime where supergravity is to be trusted. We also check that, for our specific fluxed D6

and anti-D6 composition, the metric is smooth (at worst with an orbifold singularity when

there are stacked D6) and horizonless everywhere, and we do this by establishing that the

metric approaches that of a(n) (orbifolded) flat R
4 × Rt in the vicinity of each center. In

4.3 we briefly discuss the role of the large gauge transformation of the M-theory three-form

potential in our setting. We end our paper with discussions about future directions and

some more speculative discussions about the degeneracy of “black holes” or ”proto-black

holes”.

2. Review: the lift of multi-center solutions

The lift [8] of the multi-center solution [5] is the starting point of our construction of the

new bubbling solutions. In this section we will briefly review and slightly rewrite them in

our conventions.

Let’s first define the Calabi-Yau (X) data: take αA, A = 1, . . . , b2(X) to be a basis

of H2(X; Z) and βA its dual basis, i.e.
∫

X aA ∧ βB = δB
A . We also write α0 = 1 and

β0 = J∧J∧J
J3 = J∧J∧J

DABCJAJBJC as the basis of H0(X; Z) and H6(X; Z).2

2Our triple intersection numbers DABC are defined by
R

X
αA ∧ αB ∧ αC = DABC . For the readability
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In this basis we can write a general function with value in H2∗(X; R) as

∆ = ∆ΛαΛ + ∆ΛβΛ ; Λ = 0, 1, . . . , b2(X) . (2.1)

For example, the charge vector of a BPS state can be written as

Γ = p0 + pAαA + qAβA + q0β
0 . (2.2)

In this notation, the symplectic product of two vectors in H2∗(X; R), which in the mirror

picture is just the symplectic product of two vectors in H3(X̃ ; R), reads

< ∆,∆′ >=

∫

X
∆ ∧ ∆′∗ ; ∆∗ ≡ ∆0 − ∆AαA + ∆AβA − ∆0β

0 . (2.3)

To specify a four- and in turn a five-dimensional solution, we have to specify the background

moduli lim|~x|→∞(B(~x)+iJ(~x)) as well. We encode this information by defining Ω(~x) : R
3 →

H2∗(X; R) as3

Ω0 = −e(B+iJ) ; Ω =
Ω0

√

i < Ω0, Ω̄0 >
= −e(B+iJ)

√

4
3J3

, (2.4)

where B, J are two-forms and it should be clear that by the exponential we really mean the

terms in its expansion until the cubic term. The central charge of a state with charge vector

Γ and with given complexified Kähler moduli is then given by Z(Γ;B + iJ) =< Γ,Ω >.

The way that the internal moduli manifest themselves in the non-compact space is

through the (2b2+2) harmonic functions which completely determine the 4d and 5d metric:

for a BPS state in type IIA on X with given background moduli lim|~x|→∞ Ω = Ω|∞ and

with N centers with charge vectors Γi and (pointlike) locations ~xi in R
3, i = 1, . . . , N , the

harmonic functions H(~x) : R
3 → H2∗(X; R) are given by

H = HΛαΛ + HΛβΛ =

N
∑

i=1

Γi

|~x −~xi|
+ h (2.5)

h = hΛαΛ + hΛβΛ = −2Im
(

(e−iθΩ)|∞
)

, (2.6)

where θ is the phase of the total central charge , Z(Γ =
∑

i Γi) = eiθ|Z(Γ)|.
Now we are ready to forget about the compact dimensions and focus on the non-

compact ones. The metric part of the four- and five-dimensional solutions, of the low

energy supergravity theories obtained by compactifying IIA and M-theory on X, are given

respectively by

ds2
4d = −π

S
(dt + ω(4))

2 +
S

π
dxadxa a = 1, 2, 3 (2.7)

of the equations, we will extensively avoid writing out all the DABC ’s explicitly. It should therefore be

understood that, for a vector kA in H2(X; R), (k2)A ≡ DABCkBkC and k3 ≡ DABCkAkBkC etc.
3In this paper we will be working in the large charge regime and we will systematically ignore all the

higher order corrections.
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and4

ds2
5d = 22/3(V(s))2(dψ + A0

4D)2 + 2−1/3(V(s))−1ds2
4d (2.8)

= −(22/3Q)−2( (dt + ω(4) + 2L(dψ + ω0
(4)))

2

+(22/3Q)

{

1

H0
(dψ + ω0

(4))
2 + H0dxadxa

}

. (2.9)

The 4d and 5d warp factors S(~x), Q(~x) and the 5d rotation parameter L(~x) appearing

here are functions of the R
3 coordinates xa and are given by the above harmonic functions

as

S = 2π
√

H0Q3 − (H0L)2 (2.10)

L =
H0

2
− HAHA

2H0
+

DABCHAHBHC

6(H0)2
(2.11)

Q3 =

(

1

6
DABCyAyByC

)2

(2.12)

DABCyByC = −2HA +
DABCHBHC

H0
. (2.13)

The cross terms in the 5d metric are determined up to coordinate redefinition by

dω(4) = ?3
(4) < dH,H > (2.14)

dω0
(4) = ?3

(4)dH0 (2.15)

where the ?3
(4) is the Hodge dual operator w.r.t. the flat R

3 ,

and the Calabi-Yau volume in string units (V(s))3 is given by

(V(~x)(s))3 =
1

6
DABCImtAImtBImtC =

(

S

2π

1

H0Q

)3

(2.16)

tA =
HA − i

π
∂S

∂HA

H0 + i
π

∂S
∂H0

. (2.17)

To avoid repetition we leave the complete expressions for the vector multiplets part of

the solution for section 3.2.

Furthermore, in order for ω(4) to have a global solution, one has to impose an integra-

bility condition d dω(4) = 0 which reads

< H,Γi > |~x=~xi
= 0 for all i = 1, . . . , N . (2.18)

This condition constrains the distances between the centers but is in general not suf-

ficient to fix them once there are more than two centers.

4Here we use the special font and the subscripts “(4)” to denote that these are the coordinates and

functions natural from the four-dimensional point of view and are especially not suitable in the decompact-

ification limit we will take, in which only the five-dimensional picture is valid. They have to be rescaled

when we take the M-theory limit, as will be explained later in section 3.2.
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The four-dimensional warp factor S(~x) is also called the entropy function, which in

the case of a single black hole indeed approaches S → Sbh
r2 = Ahor

4(l
(4)
P )2

1
r2 when approaching

the black hole horizon. In the general multi-center cases, on the other hand, it’s not

obvious that S2 given in (2.10) is positive everywhere in the base space R
3. From the

four-dimensional point of view it is clear that the condition

H0Q3 − (H0L)2 ≥ 0 (2.19)

has to be satisfied in order to get a metric that is real everywhere. As we will show later, in

the five-dimensional picture this condition manifests itself as the condition of the absence

of closed timelike curves.

3. Construct the bubbling solutions

After reviewing the formulae we need, now we can construct the bubbling solutions in

three steps: first taking the limit, second rescaling the solution, and finally specifying the

centers.

3.1 M-theory limit

First of all, in order to get an asymptotically flat metric in 5d, it is clear that one should

take the decompactification limit in which the M-theory radius RM goes to infinity. Recall

the relation RM = `sgs , `
(11)
P = `sg

1/3
s , from J (s)`2

s = J (M)(`
(11)
P )2 one gets

J (s) = J (M) RM

`
(11)
P

= J (M)

(

RM

`s

)2/3

. (3.1)

Therefore, if we require the Calabi-Yau volume to be finite in the eleven-dimensional

Planck units, which is the criterion for the five-dimensional description to make sense, then

taking RM

`
(11)
P

→ ∞ in equivalent to taking the type IIA Calabi-Yau Kähler moduli J (s) → ∞.

We now therefore stipulate the background moduli to be

BA|∞ ≡ bA finite (3.2)

JA(s)|∞ ≡ jA → ∞ . (3.3)

In this limit the constant terms h in the harmonic functions take a especially simple

form (the general expressions can be found in appendix B):

h0 , hA → 0 (3.4)

hA → − p0

|p0|
(j2)A
√

4
3 j3

(3.5)

h0 → − 1

|p0|
DABCpAjBjC

√

4
3 j3

=
pA

p0
hA . (3.6)
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3.2 Rescale the solution

It seems that we are done with the background moduli and all still left to be done is to

choose the appropriate charges and fill them in the harmonic functions. But there is a

subtlety which is a consequence of the large (IIA) Calabi-Yau volume limit that we are

taking. One can see this already from the expression for the constant terms in the harmonic

functions (3.5), (3.6): these remaining constants go to infinity in this limit! Indeed, as a

result, the three-dimensional (apart from the time and the 5th dimension) part of the

metric goes to (H0Q)|∞dxadxa → ∞ dx
adx

a

|~x| at spatial infinity, while it goes to zero in the

timelike direction: −gtt = 2−4/3 1
Q2 → 0.5 This is a clear signal that we are using a set of

coordinates not appropriate in the five-dimensional description.

To find the right coordinates, let’s remind ourselves that the four-dimensional metric

is measured in the four-dimensional Planck units, while the extra warp factor V−1 rescale

the metric to be measured in the five-dimensional Planck length when the the solution gets

lifted (see (2.8) ). The problem is really that, in the limit we are working in, the ratio

between the five-dimensional Planck length `
(5)
P ∼ `

(11)
P

( 1
6
(J(M))3)1/3 and the four-dimensional

one `
(4)
P ∼ `sgs

( 1
6
(J(s))3)1/2 :

`
(5)
P

`
(4)
P

∼ ( (J(s))3

6 )1/6 goes to infinity. Therefore, in order to obtain a

coordinate system natural in five dimensions, we should rescale all the coordinates with a

factor ∼ ( (J(s))3

6 )1/6 and accordingly the harmonic functions as well. Let’s define

α ≡ 1

2
(
4

3
j3)1/6 (3.7)

xa ≡ αxa (3.8)

t ≡ 1

2α
t (3.9)

{H,L,Q, ω} ≡ 1

α
{H,L,Q, ω(4)} (3.10)

S ≡ 1

α2
S (3.11)

One can easily check that the lifted five-dimensional metric (2.9) can be written in the

above rescaled coordinates and functions in exactly the same form:

2−2/3ds2
5d = −Q−2

[

dt +
ω

2
+ L(dψ + ω0)

]2

+Q

[

1

H0
(dψ + ω0)2 + H0dxadxa

]

. (3.12)

The only difference the rescaling makes to the metric is that the warp factor Q(~x) ap-

proaches a finite constant (= ±1) even in the decompactification limit we are working

in.

Let’s now pause and summarise. What we have done so far is to obtain a large

number of BPS solutions of five-dimensional supergravity with n vector multiplets, by

5See the next section for detailed asymptotic analysis.
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lifting the four-dimensional solutions in the limit that the extra direction is infinitely large.

These solutions might have singularities or/and horizons, depending on the charges of each

center and their respective locations. For later use, we will now spell out explicitly the

five-dimensional solutions.

The metric part of the solution is given by (3.12) and

Q3 =

(

1

6
DABCyAyByC

)2

(3.13)

L =
H0

2
− HAHA

2H0
+

DABCHAHBHC

6(H0)2
(3.14)

DABCyByC = −2HA +
DABCHBHC

H0
(3.15)

?3 dω = < dH,H > (3.16)

dω0 = ?3dH0 (3.17)

where the ?3 is the Hodge dual operator w.r.t.R3given by xa ,

and the entropy function is again defined as

S = 2π
√

H0Q3 − (H0L)2 . (3.18)

The harmonic functions are given by, in their most explicit form:

H0(~x) =
∑

i

p0
i

ri
(3.19)

HA(~x) =
∑

i

pA
i

ri
(3.20)

(3.21)

HA(~x) =
∑

i

qA,i

ri
+ hA ; hA = −|p0|

p0

2 (j2)A

(4
3j3)2/3

(3.22)

H0(~x) =
∑

i

q0,i

ri
+ h0 ; h0 =

pA

p0
hA = − 2

|p0|
DABCpAjBjC

(4
3j3)2/3

(3.23)

where ri = |~x − ~xi|.
Notice that now the remaining constant terms hA, h0 are insensitive to the rescaling of

j. We can therefore as well interpret the j as the M-theory asymptotic Kähler moduli

jA = lim|~x|→∞ JA(M)(~x), which we keep as finite.

Since the integrability condition (2.18) is going to play an important role in the analysis

in the following section, we also rewrite it as

< Γi,Hi >= 0 ⇔
∑

j

< Γi,Γj >

rij
= −hAp̃A

i , (3.24)

where

Hi ≡
(

H − Γi

ri

)

|~x=~xi
(3.25)

p̃A
i ≡ pA

i − p0
i

pA

p0
; rij = |~xi − ~xj| . (3.26)
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Notice that the right hand side of (3.24) would in general have a much more complicated

dependence on the charges of the centers, if we hadn’t taken the M-theory limit.

Now we turn to the vector multiplets. The 4d vector multiplets are given by6

tA =
HA − i

π
∂S

∂HA

H0 + i
π

∂S
∂H0

=

(

HA

H0
− L

Q3/2
yA

)

+ i

(

S

2π

yA

H0Q3/2

)

(3.27)

A0
4D =

2

S

∂S

∂H0

(

dt +
ω

2

)

+ ω0 (3.28)

AA
4D =

2

S

∂S

∂HA

(

dt +
ω

2

)

−AA
d ; dAA

d = ?3dHA . (3.29)

The lifted five-dimensional ones are given in terms of them as

Y A =
ImtA

( (Imt)3

6 )1/3
=

yA

(y3

6 )1/3
, (3.30)

satisfying Y 3

6 = 1, and

AA
5D = (Re tA)(dψ + A0

4D) + AA
4D

= − yA

Q3/2

(

dt +
ω

2

)

+

(

HA

H0
− L

Q3/2
yA

)

(

dψ + ω0
)

−AA
d . (3.31)

In a form more familiar in the five-dimensional supergravity literature, these solutions

can be equivalently written as

2−2/3ds2
5D = −Q−2 e0 ⊗ e0 + Qds2

base (3.32)

FA
5D = dAA

5D = −d(Q−1Y Ae0) + ΘA , (3.33)

where

ds2
base = H0dxadxa +

1

H0
(dψ + ω0)2 (3.34)

e0 = dt +
ω

2
+ L(dψ + ω0) (3.35)

ΘA = ?baseΘ
A = d

[

HA

H0
(dψ + ω0)

]

− ?3dHA . (3.36)

3.3 Specify the 4D charges

Now we would like to know what kind of 4d charges for the centers we should take, in order

to obtain an asymptotically flat, smooth, horizonless solution when lifted to five dimensions.

We now argue that the only possibility is the multi-center configurations composed of D6

and anti-D6 branes with world-volume fluxes turned on, and with the constraint that the

total D6 brane charge equals to ±1.7 This can be understood as the following: if we

6Notice that convention for AA
4D differs in sign from that of [5]; specifically, the coupling of a D0-D2

bound state with the gauge field is q0A
0
4D + qAAA

4D in our convention.
7Furthermore, each center must have D6 charge ±1, if one also wants to exclude orbifold singularities at

the center. But we will keep the formulae as general as possible and do not specify the D6 charges of each

center.
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take D2 or D4 branes or their bound states with other branes, the uplift to M-theory will

have also M2, M5 brane sources and thus won’t have the desired smooth and horizonless

virtue. In other words, the uplifted metric near a D2 or D4 center will not be flat. One

might also wonder about the possibility of adding D0 branes into the picture. First of

all, in contrast to the usual scenario [25], a D0-D6 bound state doesn’t exist in the large

volume J (s)|∞ → ∞ limit we are taking, irrespective of the (finite) value of the background

B-field. But one could still imagine a multi-center KK monopole-electron-antimonopole-

positron juxtaposition living in the large coupling limit. But this time the metric near the

D0 centers is not smooth; more specifically, the metric in the 5th direction blows up while

remaining flat in the R
3 direction. In summary, in order to get a smooth and horizonless

solution, we have to restrict our attention to D6 and anti-D6 branes with world-volume

fluxes.

From the part of the D6 world-volume action coupling to the RR-potential [26, 27]

∫

Σ7

eB+F ∧ C ; C ∈ H2∗(X, R) , (3.37)

one sees that the world-volume flux induces a D4-D2-D0 charge. Specifically, neglecting

the B-field which can always be gauged into world-volume fluxes locally on the six brane,

the charge vector of a center of p0
i D6 and with world-volume two-form flux fi

p0
i

=
fA

i

p0
i
αA

turned on is

Γi = p0
i e

fi
p0
i = p0

i + fi +
1

2

f2
i

p0
i

+
1

6

f3
i

(p0
i )

2
. (3.38)

Thus the total charge vector is8

Γ = p0 + pAαA + qAβA + q0β
0

=

N
∑

i=1

Γi =

N
∑

i=1

p0
i +

N
∑

i=1

fi +

N
∑

i=1

1

2

f2
i

p0
i

+

N
∑

i=1

1

6

f3
i

(p0
i )

2
. (3.39)

As mentioned earlier, we are especially interested in the case p0 = ±1, since this condi-

tion ensures asymptotic flatness. More specifically, only for the case p0 = ±1 the metric

approaches that of Rt × R
4 in spatial infinity without identification.

Simply filling these charges into the harmonic functions in the last subsection gives

us, as we will verify later, a metric that is asymptotically flat, smooth and horizonless

everywhere, and may or may not have the conserved charges of those of a classical black

hole.

8In the case of stacked D6 branes, we only turn on the Abelian fluxes. The reason for this restriction is

that for non-Abelian F , the induced D4-D2-D0 charges are proportional to TrF , TrF ∧F and TrF ∧F ∧F

respectively. In this case one can easily see that the corresponding solution will in general develop a

singularity or a horizon.
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4. The properties of the solution

4.1 The conserved charges

4.1.1 4d and 5d charges

When lifting a four-dimensional solution to five dimensions, the charged objects in IIA

get mapped into charged objects in M-theory. The Kaluza-Klein monopoles and electrons,

namely the D6 and D0 charges, show themselves as Taub-NUT centers and the angular

momentum in the five-dimensional solution. Especially we expect q0 ∼ JL. The (induced)

D4 charges, as can be seen in (3.33), parametrize the magnitude of the part of the field

strength that is self-dual in the Gibbons-Hawking base. In the type IIA language, in the

case with non-zero D4 charges, one also has non-zero B-field in various regions in space.

When lifted to M-theory they give a new contribution to the vector potential and we expect

those to modify the definition of the electric charges. Therefore, as suggested in [28], qA,(5D)

and JL will get extra contributions involving pA through the Chern-Simons coupling and

the Poynting vectors of the gauge field. An inspection of the five-dimensional attractor

equation for a 5d black hole

S5D = 2π
√

Q3 − J2
L (4.1)

Q3 =

(

y3
(5D)

6

)2

; DABCyB
(5D)y

C
(5D) = −2qA,(5D) , (4.2)

and comparing it to the four-dimensional ones (3.13) and (3.15) with p0 = 1 suggests that,

when pA becomes non-zero, qA,(5D) and JL must get an extra contribution as

−2qA,(5D) → −2qA,(5D) +
(p2)A

p0
(4.3)

JL → JL − pAqA

2p0
+

p3

6 (p0)2
. (4.4)

We will now verify this through explicit asymptotic analysis, while more discussion

related to the role of pA charges can be found in section 4.3.

4.1.2 The asymptotic analysis

Now we would like to work out the asymptotic form of the solution. We are interested

in it for the following two reasons. First of all we would like to verify that our metric is

indeed asymptotically flat; secondly we would like to read off all the conserved charges of

these solutions. The following asymptotic analysis applies to all the solutions in the form

of that presented in the end of the last section, i.e., to all the solutions of the N = 1

five-dimensional supergravity obtained by lifting four-dimensional solutions in the decom-

pactification limit.9

9Apart from the fact that we are assuming in this subsection that the sign of the total D6 charge

is positive, to avoid messy phase factors everywhere. The adaptation to the case in which p0 < 0 is

straightforward.
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Let’s first look at the metric part. In the limit r = |~x| → ∞ we have the various

quantities in the metric approaching10

Q = 1 + O(r−1) (4.5)

H0 =
p0

r
+ O(r−2) (4.6)

ω0 = p0 cos θdφ + O(r−1) (4.7)

L =
1

r

[(

q0

2
− pAqA

2p0
+

DABCpApBpC

6(p0)2

)

+
r̂

p0
·
( N

∑

i,j=1

< Γi,Γj >

4

(~xi − ~xj)

|~xi − ~xj |

)]

+O(r−2) , (4.8)

where the second term in the last equation is derived from the dipole term in the expansion

and we have used the integrability condition (3.24) to put it in this form.

We have now a natural choice of coordinates of the R
3 factor of the metric. This is

because the dipole term picks out a unique direction in the spatial infinity. Let’s now

choose the spherical coordinate in such a way that the vector

~JR =
∑

i,j

~Jij =
∑

i,j

< Γi,Γj >

4

~xi − ~xj

|~xi − ~xj |
(4.9)

points at the north pole. The second term in L can then be written as 1
p0

~JR · r̂ = 1
p0 JR cos θ.

Finally, solving the ω equation asymptotically gives us

1

2
ω =

1

r
JR sin2 θdφ + O(r−2) , (4.10)

up to trivial coordinate transformations.

After a change of coordinate r = ρ2/4, the metric at infinity now reads

2−2/3ds2
5D = −

{

dt +
4

ρ2

[

p0JL

(

1

p0
dψ + cos θdφ) + JR(dφ +

1

p0
cos θdψ

)]

+ O(ρ−4)

}2

+p0

{

dρ2 +
ρ2

4

[

dθ2 + sin2 θdφ2 +

(

1

p0
dψ + cos θdφ

)2]

+ O(ρ−2)

}

, (4.11)

with

JL =
q0

2
− pAqA

2p0
+

DABCpApBpC

6(p0)2
(4.12)

JR =

∣

∣

∣

∣

∣

∣

∑

i<j

< Γi,Γj >

2

~xi − ~xj

|~xi − ~xj|

∣

∣

∣

∣

∣

∣

(4.13)

10One has to be a bit careful with the order of taking the two limits r → ∞ and jA → ∞. Here we

restrict ourselves to the range 1 ¿ r ¿ RM

`
(5)
P

→ ∞, in other words, where the spacetimes remains appearing

to be five-dimensional. In this range one can indeed ignore the extra constant terms h0, hA (see appendix

B).
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being the two angular momenta, corresponding to the U(1)L exact isometry and the U(1)R
asymptotic isometry, generated by ξ3

L = ∂ψ and ξ3
R = ∂φ respectively.

Indeed we see that, the metric approaches that of a flat space without identification

when |p0| = 1. In that case it can be more compactly written as

2−2/3ds2
5D = −

[

dt +
4

ρ2
(JLσ3,L + JRσ3,R)

]2

+

(

dρ2 +
ρ2

4
(σ2

1,L + σ2
2,L + σ2

3,L)

)

+ . . . (4.14)

= −
[

dt +
4

ρ2
(JLσ3,L + JRσ3,R)

]2

+

(

dρ2 +
ρ2

4
(σ2

1,R

+σ2
2,R + σ2

3,R)

)

+ . . . (4.15)

where the σ’s are the usual SU(2)L and SU(2)R invariant one-forms of S3 (see for exam-

ple [29]).

After working out the angular momenta we now turn to the electric charges of the 5d

solutions. The gauge field part of the action of N = 1 5d supergravity is [30]

Sgauge =
1

16πG(5)

∫

GAB FA ∧ ?5F
B − 1

6
DABC FA ∧ FB ∧ AC , (4.16)

where the metric of the vector multiplets coupling is given by

GAB =
1

2
{ ∂

∂yA

∂

∂yB
log(

y3

6
)}| y3

6
=1

. (4.17)

The conserved electric charges are then given by the Noether charge

qA(5D) ≡ 16πG(5)

VS3

∫

S3
∞

∂S

∂FA
=

2

VS3

∫

S3
∞

GAB ?5 FB − 1

6
DABC FB ∧ AC , (4.18)

where VS3 is just the volume of a unit 3-sphere.

We need to know the asymptotic behaviour of the vector potential and the field strength

in order to compute the charges. They are given by

AA
5D =

pA

p0
dψ − jA

(1
6j3)1/3

dt + O(ρ−2) (+gauge transformation) (4.19)

FA
5D = −d

(

yA

1
6y3

)

∧ dt + O(ρ−2)dσ + O(ρ−3)dρ ∧ σ . (4.20)

From these equations it is clear that the Chern-Simons term does not contribute to

the charges, and from

GABFB
5D = −1

4
d
( yB

y3/6

)

{

∂

∂yB

( (y2)A
y3/6

)

}

| y3

6
=1

∧ dt + . . .

= −1

4
d(y2)A ∧ dt + . . .

=
1

2

(

qA − (p2)A
2p0

)(

ρ

2

)−3

dt ∧ dρ . . . . (4.21)
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we get after integration

qA(5D) = qA − (p2)A
2p0

. (4.22)

This finishes our analysis of the conserved charges of our solutions. As mentioned ear-

lier, the expressions for the charges and for the the asymptotic metric (4.11), (4.12), (4.13)

and (4.22) apply to all solutions lifted from four dimensions in the infinite radius limit,

i.e., all the solutions presented in section 3.2. For the specific case we consider in the last

section (let’s focus on the case p0 = +1), they are given simply by the D6 charge and the

flux of each center as

qA(5D) = qA − (p2)A
2p0

=
∑

i

(f̃2
i )A

2p0
i

(4.23)

JL =
∑

i

f̃3
i

6(p0
i )

2
(4.24)

JR =

∣

∣

∣

∣

∣

∣

1

4

N
∑

i,j=1

p0
i p

0
j

f3
ij

6

~xi − ~xj

|~xi − ~xj|

∣

∣

∣

∣

∣

∣

(4.25)

where

f̃A
i ≡ fA

i − p0
i

(

∑

j

fA
j

)

(4.26)

fA
ij ≡ fA

i

p0
i

−
fA

j

p0
j

=
f̃A

i

p0
i

−
f̃A

j

p0
j

. (4.27)

As we will see later, f̃A
i has the physical interpretation as the quantity invariant under

the gauge transformation, and p0
i p

0
jf

A
ij has the interpretation as the fluxes going through

the ijth “bubble”.

4.2 The shape of the solution

After analysing the solution at infinity, now we would like to know more about the metric

part, i.e. the shape, of these solutions. First of all we would like to spell out the criterion

that the metric is free of pathological closed timelike curves. Having black hole physics in

mind, we would also like to see if the solution exhibits a throat (AdS-looking) behaviour

in some region. These two parts of the analysis, unless otherwise stated, apply to general

solutions presented in section 3.2.

There is another region of special interest here. Namely, we would like to explicitly

verify our claim that the metric, provided that the CTC-free condition is satisfied, is smooth

and horizonless near each center. As discussed in section 3.3, this property only pertains

to the special charges (D6 or anti-D6 with fluxes) that we have chosen.

4.2.1 Closed timelike curves

Before jumping into the equations, let’s first make a detour and look at the four-dimensional

metric (2.7) we started with. Apart from the integrability condition (3.24), it’s apparent
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that we also need to impose the condition

(

S(~x)

2π

)2

= H0Q3 − (H0)2L2 ≥ 0 , (4.28)

in order to have an everywhere real metric in four dimensions. Indeed, in the case this is

not satisfied, the volume of the internal Calabi-Yau goes through a zero and things stop

making sense in all ten dimensions.

A look at the 5d metric:

2−2/3gψψ =

(

S(~x)

2π

)2( 1

H0Q

)2

, (4.29)

makes it clear that as long as the 4D metric is real everywhere, the lifted metric has its

5th direction always spacelike. Furthermore, from

(

S(~x)

2π

)2

= H0Q3 − (H0)2L2 ≥ 0 ⇒ H0Q ≥ 0 , (4.30)

it also ensures that the warp factor in front of the R
3 part of the metric is always positive,

and therefore another danger for CTC is also automatically eliminated. In more details,

this is because the harmonic functions are real by default, and it’s really the Q, or rather

the yA, attractor flow equations that are not a priori endowed with a real solution.

Now we can worry about the more subtle −Q−2(ω
2 )2 part of the metric. Looking at

the equation for ω

dω = ?3 < dH,H > , (4.31)

one sees that the danger zone is the region very close to a center, since it’s the only place

where dH and H blow up. But as we will see later, the integrability condition always

guarantees that ω actually approaches zero at least as fast as the distance to the center

under inspection. We can therefore believe that this term poses no threat. To sum up,

what we find is

4d metric real ⇔ 5d metric no CTC . (4.32)

Of course, mapping one problem to the other does not really solve anything. Indeed,

at the moment the author does not know of any systematic way of checking this con-

dition. Especially, the integrability condition, while often ensures the real (4d) metric

condition (4.28) to be satisfied near a center, is in general not sufficient to guarantee that

it is satisfied everywhere.11 On the other hand, this is how it should be, since: given N

centers, the naive moduli space of their locations grows like (R3)N , the number of distances

between them grows like N2, but the number of integrability condition grows only like N .

Given the possibility that one can always a priori add one more pair of centers with oppo-

site charges while still keeping the total charge unaltered, it seems extremely unlikely to

11In the four-dimensional context, a conjecture about the equivalence between the existence of a solution

with an everywhere well-defined metric with given background and charges, and the existence of a split

attractor flow connecting the asymptotic moduli and the attractor points of all the centers, has been

proposed and studied in [4, 31], and [13]. If this conjecture is indeed true, it provides us a more systematic

way of studying the existence of multi-centered solutions.
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be able to obtain a reasonable moduli space for BPS states with a given total charge, if

there are no rules of the game other than the integrability condition.

We finish this subsection by noting that our discussion here about the closed timelike

curves, especially the conclusion (4.32), applies to all 4D-5D lift solutions irrespective of

the background moduli. That is, it applies even without taking the decompactification

limit.

4.2.2 The throat region

In section 4.1 we have seen that, when we look at the asymptotic region:

h À 1

r
À rij

r2
, (4.33)

the harmonic function can be expanded, in the order of decreasing magnitude, as

H = h +
Γ

r
+ dipole terms + quadrupole terms + . . . , (4.34)

where the non-vanishing constant terms h are of order one in our renormalization (see

section 3.2).

If the (coordinate) distances rij of each pair of centers are all much smaller than one,

namely rij ¿ 1 ∀ i, j, one can consider another region in which

1

r
À h ,

1

r
À rij

r2
. (4.35)

In other words, when the centers are very close to each other, one can zoom in a bit more

from the asymptotic region so that the constant terms become subdominant, while still

not getting substantially closer to any of the centers than the others, and can still see the

conglomeration of centers (the blob) as an entity without seeing the structure of distinct

centers.

In this region, the harmonic functions are expanded, again with descending importance,

as

H =
Γ

r
+

(

h + dipole terms
)

+ quadrupole terms + . . . , (4.36)

and attractor flow equation is given by

DABCyByC =
1

r

(

−2qA +
(p2)A

p0

)

+ . . . . (4.37)

Define yA
bh to be the solution to the equation (y2

bh)A = −2qA + (p2)A

p0 and Q3
bh = (

y3
bh
6 )2, one

arrives at

Q =
Qbh

r
+ . . . . (4.38)

At the same time,

L =
1

r
JL + . . . =

1

r

(

q0

2
− p · q

2p0
+

p3

6(p0)2

)

+ . . . . . (4.39)

– 16 –



J
H
E
P
0
3
(
2
0
0
7
)
0
7
0

Notice that, unlike in the asymptotic region, the dipole contribution to L is sub-leading

because now 1
r À h. Again using the integrability condition to relate the dipole contri-

bution of L to the magnitude of ω, one sees that ω as well is of minor importance in this

region.

Now the 5th dimension part of the metric reads

gψψ = 22/3

(

Q

H0
− L2

Q2

)

=
1

(p0)2Q2
bh

(

Sbh

2π

)2

+ . . . , (4.40)

where

Sbh = 2π
√

p0Q3
h − (p0)2J2

L (4.41)

is a constant equal to the (classical) black entropy with the charges corresponding to that

of the total charges of our multi-center configuration.

Putting everything together, we find that the metric in the region (4.35) looks like12

2−2/3ds2
5D = −

(

r

rbh

)2

dt2bh +

(

rbh

r

)2

dr2 + 2r

(

JL

r3
bh

)

dtbh σ3,L (4.42)

+ r2
bh

(

σ2
1,L + σ2

2,L + σ2
3,L −

(

J2
L

r3
bh

)2

σ2
3,L

)

, (4.43)

where rbh ≡ √
Qbh and we have rescaled the time coordinate tbh = t√

Qbh
.

One can now readily recognise this metric as the AdS2 × S3 near horizon metric of

a BMPV black hole13 [32]. Therefore we can identify the region (4.35) as a sort of near

horizon region of the multi-center BPS solution.

So far it all seems very satisfactory: the 5D solutions obtained from lifting multi-center

4D solutions have a throat region which looks like the near horizon limit of a classical black

hole with charge given by the total charge of the 4D centers via the prescription we give

in section 4.1. But we should not forget that the analysis here depends on the existence

of the region (4.35). Indeed, it’s obvious that this region cannot exist for all choices of

charges: when the total charge does not give a classical black hole, namely when S2
bh < 0,

the existence of this region together with (4.40) would imply the presence of a CTC,

or equivalently, an imaginary metric in 4D, in this region. One thus conclude that the

region (4.35) can only exist when the total charge of all the centers together corresponds

to that of a black hole. This also justifies our notation ybh, Qbh, tbh, rbh.

In other words, when the total charge doesn’t give a black hole, at least one pair of

the centers must be far away from each other:

∃ i, j s.t. rij ∼ h or rij > h if S2
bh < 0 . (4.44)

12For the readability we have imposed in the this equation that the total monopole charge p0 = 1. It’s

trivial to put back all the p0 factors, and the metric one obtains in the case of |p0| 6= 1 is that of an

orbifolded BMPV near horizon geometry.
13Or, more precisely, an identification of AdS3 × S3 which leaves a cross term dt σ3,L behind [33]. Also

the S3 is squashed in such a way that its area again gives the black hole entropy.
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This argument applies actually not only to multi-center solutions in the large volume

limit with arbitrary charges, but also to those with arbitrary background moduli j, b, with

the only difference being that we have to include in general much more complicated constant

terms in the harmonic functions (see appendix B) to estimate the lower bound on the

distances between the centers. Therefore we conclude that, for a choice of charges such

that the total charge doesn’t give a black hole, the centers cannot get arbitrarily close to

each other, at least as long as we stay in the regime where the supergravity description is to

be trusted RM

`
(11)
P

À 1; J (M) À 1 ⇔ gs À 1 ; J (s) À 1. What happens to these multi-center

configurations with total charge of no black holes, when RM

`
(11)
P

= gs is lowered beyond the

supergravity regime is described in terms of microscopic D-brane quiver theory and the

higgsing thereof in [24]. From the five dimensional point of view, it would be interesting

to refine the result of [12] in a similar spirit.

We finish our throat examination with two remarks. First of all, the reverse of what

we just said is not always true: when the total charge does correspond to that of a classical

black hole, the centers don’t have to sit very close to each other. We can also imagine

them to be far apart and still have a well-defined metric. For example, the centers can

split themselves up into two blobs far away form each other, with each blob having its

throat region and can therefore be coarse-grained as an AdS-fragmentation kind of sce-

nario [34, 35]. Furthermore, it should be clear that our analysis given above does not

exclude the presence of any kind of throat other than the “common throat” encompassing

all the centers as we discussed here. Especially, when the total charge of a subset of the

centers corresponds to the charge of a black hole, one might also expect the presence of

a “sub-throat” encompassing just the subset in question, given that the other centers are

sufficiently far away. The most well-known example of this phenomenon is that of the

black ring geometry, which can be seen as the uplift of a D6 and a D4-D2-D0 center in

the M-theory limit [11, 8, 10]. In the case that the total charge corresponds to that of a

D6-D4-D2-D0 black hole (the case of small D0 charge), one has indeed a common throat

of the BMPV type we discussed above. But apart from that, if one zooms in further near

the D4-D2-D0 center there is another AdS3 × S2 “sub-throat” region, which is locally the

same as the uplift of the D4-D2-D0 near horizon geometry and which gives the Bekenstein-

Hawking entropy of the black ring.14 For the special case of T 6 compactification, a related

issue is discussed in the dual D5-D1-P language in [36, 6].

Finally, the presence of a throat region opens the possibility to learn more about the

CFT states these solutions correspond to: by treating the throat region as an asymptoti-

cally AdS spacetime, we can employ the AdS/CFT dictionary to read off the relevant vevs

of these proto-black holes, see for example [37]. It will be interesting to see what kind

of CFT states our bubbling solutions (including the known ones of Bena-Warner et al)

correspond to.

4.2.3 Near a center

While much of the discussion above applies generally to all the lifted solutions in the large

14which is the same as the entropy of the D4-D2-D0 blak hole.
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radius limit and depend only on the total charges, the solution near a center is of course

strongly dependent on how the charges are allocated. Indeed, as we discussed in section

3.3, we’ve chosen the specific D6 and anti-D6 with Abelian world-volume fluxes as our

centers because we’d like the metric to be free from horizons and singularities. Now we

will explicitly verify this by analysing the metric near a center. Therefore, unlike most of

the equations in the previous subsections, our discussion here applies only to the charges

we described in section 3.3:

Γ =

N
∑

i=1

Γi = 1 +

N
∑

i=1

fi +

N
∑

i=1

1

2

f2
i

p0
i

+

N
∑

i=1

1

6

f3
i

(p0
i )

2
. (4.45)

In the region very close to the ith center, where

1

ri
À 1

rij
, h0, hA , (4.46)

we can expand the harmonic functions as

H =
Γi

ri
+ Hi + O

(

ri

r2
ij

)

, (4.47)

with Hi defined below (3.24).

If we plug this into the attractor flow equation, and notice that the possible 1
ri

term

cancels because our choice of charges has the virtue

−2qA,i +
(pi)

2
A

p0
i

= 0 , (4.48)

we get

DABCyByC = −2cA,i + O
(

ri

rij

)

, (4.49)

where

cA,i = HA,i +
1

p0
i

H0
i qA,i −

1

p0
i

DABCpB
i HC

i (4.50)

= hA +
∑

j

p0
j

rij

(f2
ij)A

2
(4.51)

is a constant.

The condition that the R
3 part of the base metric is positive QH0 > 0 can be satisfied

if

p0
i cA,i < 0 . (4.52)

Assuming that our choice of locations and fluxes satisfies this condition, we have a

solution

yA = yA
i + O

(

ri

rij

)

where (4.53)

(y2
i )A
2

= −cA,i (4.54)

⇒ Q3 = Q3
i + O

(

ri

rij

)

=

(

y3
i

6

)2

+ O
(

ri

rij

)

. (4.55)
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With a similar expansion and exploit the integrability condition (3.24) at the ith center

and the explicit expression of the charges (3.38), we get

L = O
(

ri

rij

)

(4.56)

ω0 = p0
i cos θdφ + O

(

ri

rij

)

(4.57)

dω = ?3 < dH,H >= ?3dri O
(

1

ri

)

(4.58)

⇒ ω = O(ri) . (4.59)

Notice here that the first equation guarantees that (4.52) is enough to ensure that

there is no closed timelike curve near this center.

With everything put together, we obtain the metric near the ith center:

2−2/3ds2
5D = −dt′2 +dρ2 +

ρ2

4

[

dθ2 +sin2 θdφ2 +

(

1

p0
i

dψ +cos θdφ

)2]

++O
(

ri

rij

)

, (4.60)

where we have rescaled the coordinates as t′ = t
Qi

, ρ2 = 4p0
i Qiri. Therefore we conclude

that metric approaches that of a C
2/Zp0

i
orbifold, and has nothing more singular than a

usual orbifold singularity. Specifically, the solutions with only p0
i = ±1 for all the centers

will be completely smooth everywhere.

Furthermore, one sees that the U(1)L isometry generated by ξ3
L = ∂ψ has a fixed point

at the center. Thus a non-trivial two-cycle which is topologically a sphere (the bubbles) is

formed between any two centers and therefore the name “bubbling solutions” (or rather the

“sausage network” solutions). These two-cycles can support fluxes and indeed, the fluxes

going through the ijth bubble is p0
i p

0
jf

A
ij , with fA

ij defined as (4.27) [16]. Furthermore, the

amount of fluxes going through the bubbles constrains the distance between them through

the integrability condition (3.24), which in this case reads

∑

j

1

rij
p0

i p
0
j

f3
ij

6
= −hAp̃A

i = −hAf̃A
i . (4.61)

4.3 Large gauge transformation

It is well known that there is a redundancy of description, namely a gauge symmetry,

in type IIA string theory or equivalently M-theory, which is related to the large gauge

transformation of the B-field and the three-form potential C(3) respectively. Physically,

this large gauge transformation can be incurred by the nucleation of a virtual M5-anti-M5

pair and thus the formation of a Dirac surface in five dimensions [38]. This shift of C(3)

also shifts the definition of the charges, but leaves all the physical properties of the solution

intact.

While this is a generic feature for all choices of charge vectors and all background

moduli one might begin with, what we are going to do here is just to check this gauge

symmetry explicitly for our bubbling solutions.

– 20 –



J
H
E
P
0
3
(
2
0
0
7
)
0
7
0

Indeed, in our case, the transformation

fA
i → fA

i + p0
i c

A ; cA ∈ Z
b2(X) (4.62)

will in general change the charges (3.38) of the configuration, especially the total D4 charge

will transform like

pA → pA + cA (4.63)

in the case p0 = 1. Especially, one can always exploit this symmetry to put pA = 0. It’s

trivial to check that the quantities Q,L, ω, ω0 in the metric are also invariant under this

transformation, since all the combinations of harmonic functions involved can equally be

written in terms of the “invariant flux parameters” f̃i and fij defined in (4.26) and (4.27).

Especially, all the conserved charges are invariant under the transformation. On top of

that, we see that the right hand side of the integrability condition (3.24) is also invariant.15

We can therefore conclude that the metric part of the solution has a symmetry (4.62).

Furthermore, a look at the gauge field (3.31) tells us that this transformation indeed

corresponds to a large gauge transformation of the AA
5D; equivalently, in the full eleven and

ten dimensions, it corresponds to

C(3) → C(3) + cAdψ ∧ αA (M-theory) ; B → B + cAαA (IIA) . (4.64)

Indeed, a look at the D6 brane world-volume action (3.37) makes it clear that the

transformation (4.62) can be seen as turning on an extra integral B-field. This explains

the origin of this extra symmetry.

5. Conclusions and discussion

What we have done in this note is to motivate and present a large number of asymptotically

flat, smooth, and horizonless solutions to the five-dimensional supergravity obtained from

the Calabi-Yau compactification of M-theory. We also analysed their various properties and

along the way described various properties of generic five-dimensional solutions obtained

from lifting the multi-center four-dimensional solutions.

A natural question to ask is the degeneracies of such solutions. From our analysis it is

obvious that these bubbling solutions we describe have the same degeneracies as their four-

dimensional counterparts. Especially, these are charged particles without internal degrees

of freedom; their degeneracies have to come from the non-compact spacetime.

Relatively little is known about the degeneracies of such states, though. The core of

this supergravity problem is really that, although we have the integrability condition (3.24)

to constrain the type of the solutions we can have, generically it is not enough. Indeed,

while in many cases this condition alone can exclude the existence of a bound state of

given charges and background moduli, generically the fact that it can be satisfied does

not mean that the solution has to exist. Another criterion a valid solution has to conform

15In general, in the four-dimensional language, this also implies that the existence of a BPS bound state

of given, fixed charges such that p̃A
i = pA

i − pA

p0 p0
i 6= 0 for every center, is insensitive to the shift of B-field

in the large volume limit.
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to is the real metric condition (4.28), which gets translated in five dimensions as the no

CTC condition. Though the integrability condition helps to exclude the presence of an

imaginary metric near a center, in general it does not guarantee anything. For the purpose

of counting bubbling solutions and also for the greater ambition of counting multi-center

degeneracies in general, it would be extremely useful to have a systematic way to see when

the integrability is enough and when we have to impose additional conditions, and of what

kind.

For the case that is of special interest, that is the case in which the total charge is that

of a black hole, the problem is also of special difficulty. The situation is described in [24] as

the following: if we tune down the string coupling, at certain point the distances between

the centers will be of the string length (recall that `
(4)
P ∼ lsgs

r

(
(J(s))3

6
)

) and the open string

tachyons will force us to end up in a Higgs branch of the D-brane quiver theory and thus a

wrapped D-brane at one point in the non-compact dimensions. But in the other direction,

for the case with a black hole total charge at least, things are much more complicated.

As one increases the gs, a priori the state doesn’t necessarily have to open up, but rather

it can just collapse into a single-centered black hole, or any other kind of possible charge

splittings. Therefore, seen from this cartoon picture, the D-brane degeneracy really has

to be the sum of degeneracies of all of the allowed charge splittings. While at the same

time, if the total charge doesn’t give a black hole, from the real metric condition (4.28)

we see that the system has to split up when gs is tuned up, since these charges only have

multi-centered configurations as supergravity embodiments.

Now let’s come back to the quest of smooth, horizonless solutions with black hole

charges. We have argued that the bubbling solutions we presented seem to be the only

kind of solutions which can be lifted from four dimensions with these virtues. In any case

it would be interesting to find explicit BPS solutions to the 5D supergravity of M-theory

on Calabi-Yau without any exact U(1) isometry. For example, some wiggly ring structure

or other things our imagination permits. These can of course never be obtained by lifting

4D solutions.

We will now finish this paper by some speculative comments on black hole entropy.

As we have mentioned in the introduction, the contrast between the conventional view on

black holes and the one suggested by Mathur and collaborators is somewhat heightened in

the setting of a general Calabi-Yau compactification. Let’s first consider the proto-example

of the fuzzball picture, in which one has a D1-D5 system on T 4 ×S1, which can be related

by a chain of dualities to an F1-P system. This system doesn’t have classical entropy

and the microscopic entropy Smicro = 2π
√

nF nP comes from different modes of vibrations

on the string. In this case, with some hindsight wisdom, one can argue that it is not so

surprising after all that one can actually construct the supergravity solutions describing the

microstates [39, 40], since in this case the origin of the degeneracy is in the non-compact

directions. Now we can just naively compare this with the case of a usual D4-D2-D0

Calabi-Yau black hole, whose entropy can be microscopically described by that of a MSW

string [22]. For a MSW string the microscopic entropy is given by S = 2π
√

q̂0(
cL
6 ), where

q̂0 plays the role of nP . On the other hand, the central charge cL = DABCpApBpC , with pA
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being the M5 brane charges, has its in general by far the most important contribution from

the degrees of freedom of deforming the M5 brane (the divisor) within the Calabi-Yau and

the bundle on it. From this point of view it is puzzling to think about how in this case one

could reproduce this degeneracy from the configurations in the non-compact directions.

This is definitely a point that requires further understanding.

Acknowledgments

I would like to thank Dieter Van den Bleeken for sharing his notes on the lift of other

kinds of solutions, Frederik Denef and Kostas Skenderis for useful conversations, and Erik

Verlinde for the initiative, lots of discussions and encouragement.

This research is supported financially by the Foundation of Fundamental Research on

Matter (FOM).

A. Reproduce the old bubbling solutions

The known bubbling solutions are given by (See [16 – 18, 21])

ds2
5d(b) = −

(

1

Z1Z2Z3

)
2
3

(dt + k)2

+ (Z1Z2Z3)
1
3

{

1

V
(dψ + Ω0)2 + V dxadxa

}

(A.1)

(A.2)

where

V =

N
∑

i=1

p0
i

ri
; ri = |~x − ~xi| ;

N
∑

i=1

p0
i = 1 (A.3)

LA = 1 − 1

2
DABC

∑

i

1

ri

fB
i fC

i

p0
i

(A.4)

KA =
∑

i

fA
i

ri
(A.5)

M = −1

2

∑

i

∑

A

fA
i +

1

12

∑

i

1

ri

f3
i

(p0
i )

2

dΩ0 = ?3dV (A.6)

k = µ(dψ + Ω0) + Ω (A.7)

ZA = LA +
1

2V
DABCKJKK ; DABC = |εABC | (A.8)

µ = M +
1

2V
KALA +

1

6V 2
K3 (A.9)

∇× Ω = V ∇M − M∇V +
1

2
(KA∇LA − LA∇KA) (A.10)
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Let’s now see how our solutions contain these as a special case.

Firstly, apply the formulae to the special 3-charge (STU) case

DABC = |εABC | A,B,C = 1, 2, 3 . (A.11)

In general, the attractor flow equation (3.13) and (3.15) are difficult to solve, but not

in this case:

Q3 =

(

1

6
DABCyAyByC

)2

= (y1y2y3)2 (A.12)

y2y3 = −H1 +
H2H3

H0
and permutations (A.13)

⇒ Q3 =

(

− H1 +
H2H3

H0

)(

− H2 +
H1H3

H0

)(

− H3 +
H1H2

H0

)

. (A.14)

Secondly we take the special Ansatz that the Kähler form is the same in the asymptotics

for all the three directions:

J1|∞ = J2|∞ = J3|∞ = j → ∞ , (A.15)

and that the background B-field is finite

BA|∞ = bA ¿ j . (A.16)

In this case we have

HA =
1

2

∑

i

1

ri

(fi)
2
A

p0
i

− 1 A = 1, 2, 3 (A.17)

H0 =
1

2

∑

i

1

ri

(fi)
3

(p0
i )

2
−

∑

i

(f1
i + f2

i + f3
i ) . (A.18)

Now, if we rename the coordinates and quantities appearing in our solution as

V = H0 LA = −HA KA = HA M =
H0

2

Ω =
1

2
ω Ω0 = ω0 µ = L

⇒ Q3 = Z1Z2Z3 ,

(A.19)

one can easily check that our solution (3.12) reduces to

ds2
5d = 22/3ds2

5d(b) , (A.20)

and the equations for and relations between quantities defined in our solutions correctly

reproduce those appearing in the known bubbling solutions.

– 24 –



J
H
E
P
0
3
(
2
0
0
7
)
0
7
0

B. Constant terms for general charges and background

Z = < Γ,Ω >=
1

√

4
3J3

(

p0 (B + iJ)3

6
− p · (B + iJ)2

2
+ q · (B + iJ) − q0

)

(B.1)

h = −2Im
(

(e−iθΩ)|∞
)

=
2

√

4
3j3

1

|p0 (b+ij)3

6 − p·(b+ij)2

2 + q · (b + ij) − q0|
Im

{

[

p0 (b − ij)3

6
− p · (b − ij)2

2
+ q · (b − ij) − q0

]

·
[

(b + ij)3

6
+

(b + ij)2

2
+ (b + ij) + 1

]}

(B.2)

h0 =
2

√

4
3j3

1

|p0 (b+ij)3

6 − p·(b+ij)2

2 + q · (b + ij) − q0|

{

p0

6
(j3 − 3jb2) + pjb − qj

}

hA =
2

√

4
3j3

1

|p0 (b+ij)3

6 − p·(b+ij)2

2 + q · (b + ij) − q0|
(B.3)

{

bA

[

p0

6
(j3 − 3jb2) + pjb − qj

]

+ jA

[

p0

6
(b3 − 3j2b) − p(b2 − j2)

2
+ qb − q0

]}

hA =
2

√

4
3j3

1

|p0 (b+ij)3

6 − p·(b+ij)2

2 + q · (b + ij) − q0|
{

(b2 − j2)A
2

[

p0

6
(j3 − 3jb2) + pjb − qj

]

+(jb)A

[

p0

6
(b3 − 3j2b) − p(b2 − j2)

2
+ qb − q0

]}

h0 =
2

√

4
3j3

1

|p0 (b+ij)3

6 − p·(b+ij)2

2 + q · (b + ij) − q0|
{

b3 − 3j2b

6
(pjb − qj) − j3 − 3jb2

6

(

−p(b2 − j2)

2
+ qb − q0

)}

(B.4)

C. An alternative formulation

While the attractor flow equation and the 5-dimensional solution given in the subsection

3.2 is similar in form to those in the literature, we would like to present an alternative

and equivalent formulation of them here. The motivation for doing this is the following:

In equations (3.12), (3.13)– (3.15) and (3.31), the harmonic function H0 seems to play a

very special role. The solution seems to be hopelessly in peril when near the zero locus of

H0: signature of the Gibbons-Hawking base space flips, various quantities in the metric

and the gauge potential blow up; it is not at all obvious that the solution makes sense

along the co-dimension one hypersurface H0 = 0. In the context of the present paper we

are interested in the solutions with the property of being smooth everywhere, therefore we
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would have to check in particular that this also holds when H0 → 0. This has indeed been

done in a similar context in the previous work on bubbling solutions [16, 17] by explicitly

checking that the divergences in various quantities cancel to high enough orders of H0

expansion. Instead of doing the same, we will present another way of writing the attractor

flow equation and the 5-dimensional solution (3.12), (3.13) - (3.15) and (3.31), such that

it becomes manifest that there is no more danger near the hypersurface H0 = 0 than in

other regions in the spacetime, for any choice of charges.

Furthermore, slightly outside the context of the present paper, one sees that for a

configuration with total D6 charge zero in the type IIA language, one has H0 → 0 in all

directions in the asymptotically flat region. To be able to deal with this class of multi-

centered solutions, it is also useful to have a reformulation which naturally accommodates

the zero locus of H0.

Instead of writing the attractor flow equation in terms of y and Q as in (3.13) and (3.15),

let’s consider a function ιA satisfying

DABC(HB + H0ιB)(HC + H0ιC) = H0DABCyByC . (C.1)

After some algebra one arrives at the alternative formulation

2−2/3ds5d = −
(

H0

q

)2(

dt +
ω

2

)2

− 2
`

q2

(

dt +
ω

2

)

(dψ + ω0)

+
λ

q2

(

2` + (H0)2λ
)

(dψ + ω0)2 + q dxadxa (C.2)

AA
5D =− 1

q3/2

{

H0(HA+H0ιA)

(

dt+
ω

2

)

+(`ιA−H0HAλ)(dψ+ω0)

}

−AA
d , (C.3)

where ιA (instead of yA) satisfy

DABCHBιC = −HC − H0

2
DABCιBιC (C.4)

and λ and ` (instead of Q and L) are defined as

λ = −HA ιA

3
− DABC

12
HAιBιC − H0

2
(C.5)

` = (H0)2L =
DABC

6
HAHBHC − H0 HAHA

2
+ (H0)2

H0

2
(C.6)

and q is a convenient shorthand for

q3/2 = ` + (H0)2λ . (C.7)

Furthermore, the real-metric/no CTC constraint (3.24) now reads

λ(2` + (H0)2λ) > 0 . (C.8)

Notice that now none of the quantities ι, q or ` nor any combination of them appearing

in the solution diverges when H0 → 0, therefore we have shown that the region where H0
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vanishes is not more susceptible to singularity than any other generic one in the spacetime,

and this holds irrespective of the charges.16 One can also see that ` and λ instead of L and

Q are indeed the natural functions to consider with physical relevance when H0 → 0, by

considering the case of a D4-D2-D0 black hole for example. After replacing the harmonic

functions H by the charge vector Γ one obtains17

` =
cL

6
(C.9)

λ =
1

2

(

− q0 +
1

2
DABqAqB

)

=
1

2
q̂0 (C.10)

as the quantities appearing in the microscopic description of the black hole entropy [22]

S = 2π

√

cL

6
q̂0 = 2π

√
2λ` . (C.11)
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